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Modeling, Estimation and Optimization of Equity Portfolios with 
Heavy-tailed Distributions 

 
Abstract:  
In this chapter we provide a methodology to solve dynamic portfolio strategies considering 
realistic assumptions regarding the return distribution.  First, we analyze the empirical behavior 
of some equities, suggesting how to approximate an historical return series with a factor model 
that accounts for most of the variability and proposing a methodology to generate realistic return 
scenarios. Then we examine the profitability of some reward-risk strategies based on a 
forecasted evolution of the returns. Since several studies in behavioral finance have shown that 
most investors in the market are neither risk averters nor risk lovers, we discuss the use of 
portfolio strategies based on the maximization of performance measures consistent with these 
investors’ preferences. We first argue the computational complexity of reward-risk portfolio 
selection problems and then we compare the optimal sample paths of the future wealth obtained 
by performing reward-risk portfolio optimization on simulated data.   
 
1 Introduction 
The purpose of this paper is to model and forecast the behavior of financial asset returns in order 
to optimize the performance of portfolio choices. In particular, we deal with three fundamental 
themes in portfolio theory: (1) the reduction of dimensionality of the portfolio problem, (2) the 
generation of future scenarios, and (3) the maximization of the portfolio performance in a 
reward-risk plane consistent with investor’s behavior. To do so, we suggest a methodology to 
simulate the joint behavior of future returns to which we apply portfolio selection strategies. For 
this purpose we consider the recent historical observations of some equities, paying attention to 
the modeling of all distributional aspects of the financial series. The empirical analysis 
performed on these series suggest that they exhibit (1) asymmetry and heavy tailedness and (2) 
volatility clustering such that calm periods are generally followed by highly volatile periods and 
vice versa. Moreover, the findings suggest that the dependence model has to be flexible enough 
to account for the asymmetry of central dependence and, even more importantly, dependence of 
the tail events (“huge losses go together”). It is no surprise that the Gaussian distributional 
assumption is rejected for the financial series in our study. In fact, these results are largely 
confirmed by several empirical studies.2  

In searching for an acceptable model to describe the dependence structure, we first 
perform a principal components analysis (PCA) to identify the main portfolio factors whose 
variance is significantly different from zero. By doing so, we obtain the few components that 
explain the majority of the return volatility, resulting in a reduction of the dependence structure 
dimension. In order to simulate realistic future return scenarios, we distinguish between the 
approximation of PCA-residuals and PCA-factors. The sample residuals obtained from the factor 
model are well approximated with an ARMA(1,1)-GARCH(1,1) model with stable innovations. 
As a result, we suggest simulating them independently by the simulated factors. Next, we 
examine the behavior of each factor with a time-series process belonging to the ARMA-GARCH 
family with stable Paretian innovations and we suggest modeling dependencies with an 
asymmetric Student t copula valued on the innovations of the factors.3 By doing so, we take into 
account the stylized facts observed in financial markets such as clustering of the volatility effect, 
heavy tails, and skewness. We then separately model the dependence structure between them.  

It is well known that the classic mean-variance framework is not consistent with all 
investors’ preferences. According to several studies, any realistic way of optimizing portfolio 
performance should maximize upside potential outcomes and minimize the downside outcomes.  

                                                 
2 For a summary of studies, see Rachev and Mittnik (2000), Balzer (2001), Rachev et al. (2005), and Rachev et al. 
(2007).  
3 See Sun et al. (2008) and Biglova et al. (2008).  
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For this reason, the portfolio literature since about the late 1990s has proposed several alternative 
approaches to portfolio selection.4 In particular, in this chapter we analyze portfolio selection 
models based on different measures of risk and reward. However, the resulting optimization 
problems consistent with investors’ preferences could present more local optima. Thus we 
propose solving them using a heuristic for global optimization.5 Finally, we compare the ex-post 
sample paths of the wealth obtained with the maximization of the Sharpe ratio and of the other 
performance measures applied to simulated returns.6 

The chapter is organized as follows. In Section 2 we provide a brief empirical analysis of 
the dataset used in this study. In Section 3 we examine a methodology to build scenarios based 
on a simulated copula. In Section 4 we provide a comparison among different strategies. Our 
conclusions are summarized in Section 5.  
 
2 Empirical Evidence from the Dow Jones Industrial Average Components 

 
For purposes of our study, we analyze 30 stocks that were components of the Dow Jones 

Industrial Average (DJIA) on 10/03/2008.7 In particular, we investigate the log returns for 1837 
daily observations from 6/14/2001 to 10/03/2008 for each of the 30 stocks. Central theories in 
finance and important empirical studies assume that asset returns follow a normal distribution. 
The justification of this assumption is often cast in terms of its asymptotic approximation. 
However this can be only a partial justification because the Central Limit Theorem for 
normalized sums of independent and identically distributed (i.i.d.) random variables determines 
the domain of attraction of each stable law.8 Therefore, it is not surprising that when we consider 
tests for normality such as the Jarque-Bera and Kolmogorv-Smirnov tests (with a 95% 
confidence level) that the null hypothesis of normality for the daily log returns is rejected for 24 
of the 30 stocks. However if we test the stable Paretian assumption with a 95% confidence level 
employing the Kolmogorv-Smirnov statistic, we have to reject the null hypothesis only for four 
of the 30 stocks. Moreover, observing the covariation of the last two years of our data (whose 
time include also the period of the failure of Lehman Brothers), we deduce that the tails of the 
return distribution should consider (1) asymmetry of dependence and (2) dependence of the tail 
events. Therefore, the dependence model cannot be approximated with a multivariate normal 
distribution because it fails to describe both phenomena.9  

Even from these preliminary tests it is reasonable to conclude that the assumption of i.i.d. 
returns and conditional homoskedasticity is not the best model to approximate the return 
evolution of all equities. Since the prices observed in the market involve information on past 
market movements, we should consider the return distribution conditioned on information 
contained in past return data, or a more general information set. The class of autoregressive 
moving average (ARMA) models is a natural candidate for conditioning on the past of a return 
series. However, the conditional volatility of ARMA models is independent of past realizations 
while empirical evidence shows that conditional homoskedasticity is often violated in financial 
data. In particular, we observe volatility clusters on returns series. Such behaviour is captured by 
autoregressive conditional heteroskedastic models (ARCH)10 and their generalization (GARCH 

                                                 
4 See Balzer (2001), Biglova et al. (2004), Rachev et al. (2008), Ortobelli et al. (2009). 
5 See Angelelli and Ortobelli (2009). 
6 See Sharpe (1994), Biglova et al. (2004, 2009). 
7 These stocks are: ALCOA INC .(AA), AMER EXPRESS INC (AXP), BOEING CO (BA), BK OF AMERICA CP (BAC), CITIGROUP 
INC (C), CATERPILLAR INC (CAT), CHEVRON CORP (CVX), DU PONT E I DE NEM (DD), WALT DISNEY-DISNEY C (DIS), GEN 
ELECTRIC CO (GE),  GEN MOTORS (GM), HOME DEPOT INC (HD), HEWLETT PACKARD CO (HPQ)., IBM, Intel Corporation (INTC), 
JOHNSON AND JOHNS DC (JNJ), JP MORGAN CHASE CO (JPM), KRAFT FOODS INC (KFT), COCA COLA (KO),  MCDONALDS 
(MCD), 3M COMPANY (MMM), MERCK CO INC (MRK), Microsoft Corporation (MSFT), PFIZER INC (PFE), PROCTER GAMBLE 
CO(PG), AT&T INC (T), UNITED TECH (UTX), VERIZON COMMUN (VZ), WAL MART STORES (WMT), EXXON MOBIL CP(XOM). 
8 See Zolatorev (1986). 
9 See, for example, Rachev and Mittnik (2000), Rachev et al. (2005), and Rachev et al. (2007).  
10 See Engle (1982). 



 4

models),11 where the innovations are conditionally stable Paretian distributed. Several empirical 
experiments by Rachev and Mittnik (2000) have reported the typical behavior problem of time 
series modeling.  
Assume that daily stock returns follow ARMA(p,q)-GARCH(s,u) processes; that is, assume  
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where ,j tr  is the daily return of the stock j (j = 1,..., 30) at day t (t = 1,..., 1,837). Since several 
studies have shown that ARMA-GARCH filtered residuals are themselves heavy tailed, then it 
makes sense to assume that the sequence of innovations ,j tz  is an infinite-variance process 
consisting of i.i.d. random variables in the domain of normal attraction of a stable distribution 
with index of stability jα  belonging to (0,2). That is, there exist normalizing constants ( )T

jh R+∈  

and ( )T
jk R∈ such that  
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where the constants ( )T
jh  have the form ( ) ( ) jT

j jh L T Tα
=  and )(TLj  are slowly varying functions 

as ∞→T . ( , , )
j j j jSα σ β μ  is a stable Paretian distribution with index of stability, jα ∈(0,2], 

skewness parameter, ]1,1[−∈jβ , scale parameter, +ℜ∈jσ , and location parameter, μj∈ℜ .12 
In particular, we can easily test different distributional hypotheses for the innovations of 
ARMA(1,1)-GARCH(1,1): 

, ,0 ,1 , 1 ,1 , 1 , , , ,
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;j t j j j t j j t j t j t j t j t

j t j j j t j j t
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− −
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                                     (1) 

estimated for the equity returns. First we observe that a simple Ljung-Box Q-statistic for the full 
model (see Box et al. 1994) indicates that we cannot reject an ARMA(1,1)-GARCH(1,1)  model for 
all return series. Moreover, once the maximum likelihood estimates of the model are obtained 
from the empirical innovations , , ,0 ,1 , 1 ,1 , 1

ˆˆ ˆˆ ˆj t j t j j j t j j tr a a r bε ε− −= − + + , we can easily get the 
standardized innovations , , ,ˆ ˆˆ /j t j t j tz ε σ= . We can then test these innovations with respect to the 
stable non-Gaussian distribution versus the Gaussian one by applying the Kolmogorov-Smirnov 
(KS) statistic according to 

( ) ( ) |ˆ|sup xFxFKS S
Rx

−=
∈

, 

where ( )xFS  is the empirical sample distribution and ( )xF̂  is the cumulative distribution function 
evaluated at x for the Gaussian or  stable non-Gaussian fit, respectively. The KS test allows a 
comparison of the empirical cumulative distribution of innovations with either a simulated 
Gaussian or a simulated stable distribution. For our sample, KS statistics for the stable non-
Gaussian test is almost 10 times smaller (in average) than the KS distance in the Gaussian case.  

 
 
 

                                                 
11 See Bollerslev (1986). 
12 Refer to Samorodnitsky and Taqqu (1994) and Rachev and Mittnik (2000) for a general discussion of the 
properties and use of stable distributions. 
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3 Generation of scenarios consistent with empirical evidence 
 
Several problems need to be overcome in order to forecast, control, and model portfolios in 
volatile markets. First, we have to reduce the dimensionality of the problem, to get robust 
estimations in a multivariate context. Second, as has been noted in the portfolio selection 
literature, it is necessary to properly take into consideration the dependence structure of financial 
returns. Finally, the portfolio selection problem should be based on scenarios that take into 
account all the characteristics of the stock returns: heavy-tailed distributions, volatility 
clustering, and non-Gaussian copula dependence. 
 
3.1 The portfolio dimensionality problem  
 
When we deal with the portfolio selection problem under uncertainty conditions, we always have 
to consider the robustness of the estimates necessary to forecast the future evolution of the 
portfolio. Since we want to compute optimal portfolios with respect to some ordering criteria, we 
should also consider the sensitivity of risk and reward measures with respect to changes in 
portfolio composition. Thus, the themes related to robust portfolio theory are essentially twofold: 
(1) the risk (reward) contribution given by individual stock components of the portfolio13 and  
(2) the estimation of the inputs (i.e., statistical parameters).14  
As discussed by Rachev et al. (2005) and Sun et al. (2008a, 2008b), the portfolio dimensional 
problem is strictly linked to the approximation of statistical parameters describing the 
dependence structure of the returns. Moreover, Kondor et al. (2007) have shown that the 
sensitivity to estimation error of portfolios optimized under various risk measures can have a 
strong impact on portfolio optimization, in particular when we consider the probability of rare 
events. Thus, according to the studies by Papp et al. (2005) and Kondor et al. (2007), robustness 
of the approximations could be lost if there is not an “adequate” number of observations. In fact, 
Papp et al. (2005) have shown that the ratio v between the estimated optimal portfolio variance 
and the true one follows the rule: 

1

1 nv
K

−
⎛ ⎞= −⎜ ⎟
⎝ ⎠

, 

where K is the number of observations and n is the number of assets. Consequently, in order to 
get a good approximation of the portfolio variance, we need to have a much larger number of 
observations relative to the number of assets. 
Similar results can be proven for other risk parameter estimates such as conditional value at 
risk.15 Because in practice the number of observations is limited, in order to get a good 
approximation of portfolio input measures, it is necessary to find the right tradeoff between the 
number of historical observations and a statistical approximation of the historical series 
depending only on a few parameters.  
One way to reduce the dimensionality of the problem is to approximate the return series with a 
regression-type model (such as a k-fund separation model or other model) that depends on an 
adequate number (not too large) of parameters.16 For this purpose, we perform a PCA of the 
returns of the 30 stocks used in this chapter in order to identify few factors (portfolios) with the 
highest variability. Therefore, we replace the original n (n = 30 for our case) correlated time 
series ir  with n uncorrelated time series iP  assuming that each ir  is a linear combination of the 

iP . Then we implement a dimensionality reduction by choosing only those portfolios whose 
variance is significantly different from zero. In particular, we call portfolios factors fi the p 
                                                 
13 See, for example, Fisher (2003) and Tasche (2000).  
14 See among others, Chopra and Ziemba (1993), Papp et al. (2005), Kondor et al. (2007), Rachev et al. (2005), Sun 
et al. (2008), and Biglova et al. (2008)). 
15 See Kondor et al. (2007). 
16 See Ross (1978). 
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portfolios iP  with a significant variance, while the remaining n – p portfolios with very small 
variances are summarized by an error ε . Thus, each series ir  is a linear combination of the 
factors plus a small uncorrelated noise: 

1 1 1

p pn

i i i i i i i
i i p i

r c f d P c f ε
= = + =

= + = +∑ ∑ ∑ , 

Generally, we can apply the PCA either to the variance-covariance matrix or to the correlation 
matrix. Since returns are heavy-tailed dimensionless quantities, we apply PCA to the correlation 
matrix obtaining 30 principal components, which are linear combinations of the original series, 

1 30( ,..., ) 'r r r= .  
Table 1 shows the total variance explained by a growing number of components. Thus, 

the first component explains 41.2% of the total variance and the first 14 components explain 
80.65% of the total variance. Because all the other components contribute no more than 1.75% 
of the global variance, we implement a dimensionality reduction by choosing only the first 14 
factors. As a consequence of this principal component analysis, each series ir  (i = 1…30) can be 
represented as a linear combination of 14 factors plus a small uncorrelated noise. 

 
TABLE 1 ABOUT HERE 
 

Once we have identified 14 factors that explain more than 80% of the global variance, 
then we can generate the future returns ir   using the factor model: 

14

, , , ,
1

i t i i j j t i t
j

r f eα β
=

= + +∑   t=1,…,1837;  i=1,…,30                                   (2) 

Table 2 reports the coefficients ,;i i jα β  of factor model (2). The generation of future scenarios 
should take into account (1) all the anomalies observed in equity returns; (2) the time evolution 
of factor ,j tf  and of errors ,i te , and; (3) the comovements of the vector of the returns considering 
the skewness and kurtosis of the joint distribution.  
 
TABLE 2 ABOUT HERE 
 

To deal with the third problem, we suggest employing a skewed copula with heavy tails. 
A copula function C associated to random vector ),...,( 1 nυυυ =  is a probability distribution 
function on the n-dimensional hypercube, such that: 

( ) ( ) ( )( ) ( ))(),....,(,...,,...,),...,( 111111 1 nυυnnnnn yFyFCyPyPCyyPyyF
n

=≤≤=≤≤= υυυυυ , 
where 

i
Fυ  is the marginal distribution of the i-th component (see Sklar (1959)). So once we have 

generated scenarios with the copula ( ) ( ))(),....,(,..., 1
1

1
1 1 nυυn uFuFFuuC

n

−−= υ  (where 1
i

Fυ
−  is the 

inverse cumulative function of the i-th marginal derived from the multivariate distributional 
assumption Fυ ) that summarizes the dependence structure of returns, then we can easily generate 
joint observations using the most opportune inverse distribution functions 1

i
Fυ

− of the single 
components applied to the points generated by the copula. In particular, we next tackle the 
general problem of return generation considering a multivariate skewed Student’s t copula for 
the joint generation of innovations of the 14 factors.  
 
3.2 Generation of return scenarios 
 
Let us summarize the algorithm we propose to generate return scenarios according to the 
empirical evidence. Assume the log-returns follow model (2). In step 1 of the algorithm we 
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approximate each factor ,j tf  with an ARMA(1,1)-GARCH(1,1) process with stable Paretian 
innovations. Then we provide the marginal distributions for standardized innovations of each 
factor used to simulate the next-period returns. In the step 2 of the algorithm we estimate the 
dependence structure of the vector of standardized innovations with a skewed Student t. In 
particular, we first estimate the dependence structure among the innovations with an asymmetric 
t-copula. Then we combine the marginal distributions and the scenarios for the copula into 
scenarios for the vector of factors. By doing so, we generate the vector of the standardized 
innovation assuming that the marginal distributions are jα − stable distributions and considering 
an asymmetric t-copula to summarize the dependence structure. Then we can easily generate the 
vector of factors and in the last step of the algorithm we show how to generate future returns.  
The algorithm is as follows. 
 
Step 1. Carry out maximum likelihood parameter estimation of ARMA(1,1)-GARCH(1,1) for 
each factor ,j tf   (j=1,…,14) 

, ,0 ,1 , 1 ,1 , 1 ,

, , ,

2 2 2
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 1,...,14; 1,..., .

j t j j j t j j t j t

j t j t j t

j t j j j t j j t

f a a f b

u

c c d

j t T

ε ε

ε σ

σ σ ε

− −

− −

= + + +

=

= + +

= =

.                                      (3) 

Since we have 1,837 historical observations, we use a window of T = 1,837. Table 3 reports the 
maximum likelihood estimates for the ARMA-GARCH parameters for all 14 factors.  
 
TABLE 3 ABOUT HERE 
 
Approximate with jα − stable distribution ( , , )

j j j jSα σ β μ  the empirical standardized innovations 

, , ,ˆˆ /j t j t j tu ε σ=   where the innovations , , ,0 ,1 , 1 ,1 , 1ˆ 1,...,14j t j t j j j t j j tf a a f b jε ε− −= − − − = .17 
In order to value the marginal distribution of each innovation, we first simulate S stable 
distributed scenarios for each of the future standardized innovations series. Then we compute the 
sample distribution functions of these simulated series: 

{ }( ), 1 , 1
ˆ ˆ

1

1( ) ,  ,  1,...,14sj T j T

S

u u x
s

F x I x j
S+ + ≤

=

= ∈ =∑                                           (4) 

where ( )
, 1ˆ s

j Tu +  (1 s S≤ ≤ ) is the s-th value simulated with the fitted  αj-stable distribution for future 
standardized innovation (valued in T+1 ) of the j-th factor. 
 
Step 2.  Fit the 14-dimensional vector of empirical standardized innovations 1 14ˆ ˆ ˆ[ ,..., ]u u u ′=  with 
an asymmetric t-distribution 1 14[ ,..., ] 'V V=V  with v degree of freedom; that is,  

Y Y= + +V μ γ Z                                                          (5) 
where μ  and γ  are constant vectors and Y  is inverse-gamma distributed ( )/ 2; / 2IG v v 18  
independent of the vector Z that is normally distributed with zero mean and covariance matrix 

[ ]ijσΣ = . We use the maximum likelihood method to estimate the parameters ( )ˆˆ ˆ, , ,i ii iv μ σ γ  of 
each component. Then an estimator of matrix Σ  is given by  

( ) ( )
2

2

2 2ˆ ˆ ˆcov
( 2) 4 2

v v
v v

⎛ ⎞ −
∑ = −⎜ ⎟⎜ ⎟− −⎝ ⎠

V γγ'  

                                                 
17 For a general discussion on properties and use of stable distributions, see Samorodnitsky and Taqqu (1994) and 
Rachev and Mittnik (2000). 
18 See among others, Rachev and Mittnik (2000). 
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where ( )1 14ˆ ,...,γ γ=γ  and ( )cov V  is the variance-covariance matrix of V. Table 4 reports the 
estimated parameters of the multivariate skewed Student’s t distribution for the 14 factors.  
 
TABLE 4 ABOUT HERE 
 
Since we have estimated all the parameters of Y and Z, we can generate S scenarios for Y and, 
independently, S scenarios for Z, and using (5) we obtain S scenarios for the vector of 
standardized innovations 1 14ˆ ˆ ˆ[ ,..., ]u u u ′=  that is asymmetric t-distributed. Denote these scenarios 
by ( ) ( )

1 14( ,..., )s sV V  for 1,...,s S=  and denote the marginal distributions ( )
jVF x  for 1 14j≤ ≤  of the 

estimated 14-dimensional asymmetric t-distribution by 1 14 1 1 14 14( ,..., ) ( ,..., ).VF x x P V x V x= ≤ ≤  Then 
considering ( ) ( )( ),

j

s s
j V jU F V=  1 14; 1 ,j s S≤ ≤ ≤ ≤  we can generate S scenarios ( ) ( )

1 14( ,..., ),s sU U  

1,...,s S=  of the uniform random vector 1 14( ,..., )U U  (with support on the 14-dimensional unit 
cube) and whose distribution is given by the copula  

1 1

1 141 14 1 14( ,..., ) ( ( ),..., ( ));0 1;1 14V V V iC t t F F t F t t i− −= ≤ ≤ ≤ ≤ . 
Considering the stable distributed marginal sample distribution function of the j-th standardized 
innovation 

, 1ˆ ;  1,...,14
j TuF j

+
=  (see (4)); and the scenarios ( )s

jU  for 1 14; 1j s S≤ ≤ ≤ ≤ , then we 
can generate S scenarios of the vector of standardized innovations (taking into account the 
dependence structure of the vector) ( ) (1, ) (14, )

1 1 1( ,..., ), 1,...,s s s
T T Tu u u s S+ + += =  valued at time 1T +  

assuming  

( ) ( )
, 1

1
( , ) ( )

ˆ1 ;1 14;1
j T

j s s
T u ju F U j s S

+

−

+ = ≤ ≤ ≤ ≤ . 

Once we have described the multivariate behavior of the standardized innovation at time T+1 
using relation (3), we can generate S scenarios of the vector of innovation  

( ) ( )( ) (1, ) (14, ) (1, ) (14, )
1 1 1 1, 1 1 14, 1 1,..., ,..., ,s s s s s

T T T T T T Tu uε ε ε σ σ+ + + + + + += =  1,...,s S= , 

where , 1j Tσ +  are still defined by (3). Thus using relation (3) we can generate S scenarios of the 

vector of factors ( ) ( ) ( )
1 1, 1 14, 1,...,s s s

T T Tf f f+ + +⎡ ⎤= ⎣ ⎦  valued at time T+1. Observe that this procedure can 
always be used to generate a distribution with some given marginals and a given dependence 
structure.19  
 
Step 3. In order to estimate future returns valued at time T+1, we first estimate a model 
ARMA(1,1)-GARCH(1,1) for the residuals of the factor model (2). That is, we consider the 
empirical residuals  

14

, , , ,
1

ˆˆî t i t i i j j t
j

e r fα β
=

= − −∑  

and then we estimate the parameters ,0 ,1 ,1, , ,i i ig g h ,0 ,ik  ,1 ,1,i ik p  for all I = 1,…, 30 of the 
ARMA(1,1)-GARCH(1,1)  

, ,0 ,1 , 1 ,1 , 1 ,

, , ,

2 2 2
, ,0 ,1 , 1 ,1 , 1

ˆ ˆ

;

 i 1,...,30; 1,..., .

i t i i i t i i t i t

i t i t i t

i t i i i t i i t

e g g e h q q

q v z

v k k v p q

t T

− −

− −

= + + +

=

= + +

= =

                                       (6) 

                                                 
19 See, among others, Rachev et al. (2005), Sun et al. (2008), Biglova et al. (2008),  and Cherubini et al. (2004) for 
the definition of some classical copula used in finance literature. 
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Moreover, as for the factor innovation, we approximate with αj-stable distribution ( , , )
i i i iSα σ β μ  

for any 1,...,30i =  the empirical standardized innovations , , ,ˆˆ /i t i t i tz q v= , where the innovations 

, , ,0 ,1 , 1 ,1 , 1ˆ ˆ ˆi t i t i i i t i i tq e g g e h q− −= − − − . Then we can generate S scenarios αj-stable distributed for the 

standardized innovations ( )
, 1
s

i Tz +  1,...,s S=  and from (6) we get S possible scenarios for the 

residuals ( ) ( )
, 1 , 1 , 1
s s

i T i T i Te v z+ + +=  1,...,s S= . Therefore, combining step 2 with the estimation of future 
residuals from factor model (2), we get S possible scenarios of returns  

14
( ) ( ) ( )
, 1 , , ,

1

ˆˆs s s
i T i i j j t i t

j
r f eα β+

=

= + +∑   1,...,s S= .                             (7) 

The procedure illustrated here permits one to generate S scenarios at time T+1 of the vector of 
returns. 
 
4 The portfolio selection problem 
 
Suppose we have a frictionless market in which no short selling is allowed and all investors act 
as price takers. The classical portfolio selection problem among n assets in the reward-risk plane 
consists of minimizing a given risk measure ρ  provided that the expected reward v  is 
constrained by some minimal value m; that is, 

( )

( )
1

min

. .

; 0, 1;

bx

n

b i i
i

x r r

s t

v x r r m x x

ρ

=

′ −

′ − ≥ ≥ =∑

                                               (8) 

where br  denotes the return of a given benchmark, and 
1

n

i i
i

x r x r
=

′ = ∑  stands for the returns of a 

portfolio with composition 1( ,..., )nx x x ′= . The portfolio that provides the maximum expected 
reward v  per unit of risk ρ  is called the market portfolio and is obtained from problem (8) for 
one value m among all admissible portfolios. In particular, when the reward and risk are both 
positive measures, the market portfolio is obtained as the solution of the optimization problem  

1

( ' )max
( ' )
. .

0, 1

b

x
b

n

i i
i

v x r r
x r r

s t

x x

ρ

=

−
−

≥ ∑ =

                                                         (9) 

Clearly there exist many possible performance ratios ( )
( )

( )
v X

G X
Xρ

= . 

A first classification with respect to the different characteristics of reward and risk measures is 
given in Rachev et al. (2008). The most important characteristic is the isotony (consistency) with 
an order of preference; that is, if X is preferable to Y then ( ) ( )G X G Y≥  ( ( ) ( )G X G Y≤ ). 
Although the financial literature on investor behavior agrees that investors are non-satiable, there 
is not a common vision about the investors’ aversion to risk. Thus investors’ choices should be 
isotonic with non-satiable investors' preferences (i.e., if X Y≥ , then ( ) ( )G X G Y≥ ).  
Several behavioral finance studies suggest that most investors are neither risk averse nor risk 
loving.20 Thus, according to Bauerle and Müller (2006)), if risk and reward measures are 

                                                 
20 See Friedman and Savage (1948), Markowitz (1952), Tversky and Kahneman (1992), Levy and Levy (2002),  and 
Ortobelli et al. (2009). 
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invariant in law (i.e., if X and Y have the same distribution then ( ) ( ) and ( ) ( )X Y v X v Yρ ρ= = ), 
and the risk measure is positive and convex (concave) and the reward is positive and  concave 
(convex), then the performance ratio is isotone with risk-averse (lover) preferences. Rachev et al. 
(2008) and Stoyanov et al. (2007) have classified the computational complexity of reward-risk 
portfolio selection problems. In particular, Stoyanov et al. (2007) have shown that we can 
distinguish four cases of reward/risk ratios G(X) that admit unique optimum portfolio strategies. 
The most general case with unique optimum is when the ratio is a quasi-concave function; that 
is, the risk functional ( )Xρ  is positive convex and the reward functional ( )v X  is positive 
concave. As observed above, by maximizing the ratio ( )G X  we obtain optimal choices for risk-
averse investors. In the other cases, when both measures ( )Xρ  and ( )v X  are either concave or 
convex, then the ratio ( )G X  is isotone with investors’ preferences that are neither risk averse 
nor risk loving. However, in this last case the performance ratio admits more local optima.  
 
4.1 Review of Performance Ratios 
 
Here we will review three performance ratios that we will use in the next section when we 
perform our empirical comparisons: Sharpe ratio, Rachev ratio, and Rachev higher moments 
ratio. 
According to Markowitz' mean-variance analysis, Sharpe (1994) suggested that investors should 
maximize what is now referred to as Sharpe ratio (SR) given by 

1 1,

1 1,

( )
( ) .

( )
T T b

T T b

E x r r
SR x r

STD x r r
+ +

+ +

′ −
′ =

′ −
 

where 1 1,( )T T bSTD x r r+ +′ −  is the standard deviation of excess returns. Maximizing the Sharpe 
ratio, we get a market portfolio that should be optimal for non-satiable risk-averse investors, and 
that is not dominated in the sense of second-order stochastic dominance. The maximization of 
the Sharpe ratio can be solved as a quadratic-type problem and thus it presents a unique 
optimum. In contrast to the Sharpe ratio, the next two performance ratios (Rachev ratio and 
Rachev higher moments ratio) are isotonic with the preferences of non-satiable investors that are 
neither risk averse nor risk lovers. 
The Rachev ratio (RR)21 is the ratio between the average of earnings and the mean of losses; that 
is,  

1, 1
1

1 1,

( )
( , , )

( )
T b T

T
T T b

ETL r x r
RR x r

ETL x r r
β

α

α β + +
+

+ +

′−
′ =

′ −
, 

where the ETL is the Expected Tail Loss, also known as Conditional Value-at-Risk (CVaR), is 
defined as 

0

1( ) ( )qETL X VaR X dq
α

α α
= ∫ , 

and   
( ){ }1( ) ( ) infq XVaR X F q x P X x q−= − = − ≤ >  

 
is the Value-at-Risk (VaR) of the random return X. If we assume a continuous distribution for the 
probability law of X, then  ( )( ) ( )ETL X E X X VaR Xα α= − ≤ −  and, therefore ETL, can be 
interpreted as the average loss beyond VaR. Figure 1 shows the values of this performance ratio 
when 0.01α β= =  and the components of three assets vary on the simplex  

( ){ }0;1/,, 3

1
3

321 ≥=∈= ∑ = ii i xxRxxxSIMP . 
                                                 
21 See Biglova et al. (2004). 
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FIGURE 1 ABOUT HERE 
 
As we can see from Figure 1, this performance ratio admits more local maxima . In our 
comparison we consider the parameters 0.35,α =  and 0.1β = . 
The Rachev higher moments ratio (RHMR)22 is given by 

1 1 1,

1 1 1,

( )
( )

( )
T T b

T T b

v x r r
RHMR x r

x r rρ
+ +

+ +

′ −
′ =

′ −
 

where  

1 1
4

1 1
2

( ) ( / ( )) ( )
b b

b

i

b
b b b x r r i b x r r i

i x r r

x r rv x r r E x r r x r r F p a E x r r F p
σ

− −

′ ′− −
= ′ −

⎛ ⎞⎛ ⎞′ −⎜ ⎟′ ′ ′ ′− = − − > + − >⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠
∑ ; 

1 1
4

1 1
2

( ) ( / ( )) ( )
b b

b

i

b
b b b x r r i b x r r i

i x r r

x r rx r r E x r r x r r F q b E x r r F qρ
σ

− −

′ ′− −
= ′ −

⎛ ⎞⎛ ⎞′ −⎜ ⎟′ ′ ′ ′− = − − − < − − <⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠
∑ , 

bx r rσ ′ −  is the standard deviation of bx r r′ − , ,ia …, Rib ∈  and , (0,1)i ip q ∈ .  
This performance ratio was introduced to approximate the non-linearity attitude to risk of 
decision makers considering the first four moments of the standardized tails of the return 
distribution.23 As we can observe from the definition, the RHMR is very versatile and depends 
on many parameters. To simplify our analysis in the empirical comparison to follow, we assume  

1 1 1;a b= =  2 2 3 31/ 2; 1/ 6;a b a b= = − = =  4 4 1/ 24;a b= = −  1 0.9;p =  2 0.89;p =  3 0.88;p =  

4 0.87;p =  and 0.35,iq =  1, 2,3, 4i = . Figure 2 shows the values of this performance ratio when 
the composition of three assets varies on the simplex. As we can see from Figure 2, this 
performance ratio admits more local maxima. 
 
FIGURE 2 ABOUT HERE 
 
In order to overcome the computational complexity problem for global maximum, we use the 
heuristic proposed by Angelelli and Ortobelli (2009) that presents significant improvements in 
terms of objective function and portfolio weights with respect to the classic function fmincon 
provided with the optimization toolbox of MATLAB. Moreover, this heuristic approximates the 
global optimum with an error that can be controlled in much less computational time than classic 
algorithms for global maximum such as simulated annealing.  

 
4.2 An empirical comparison among portfolio strategies  

 
In order to value the impact of non-linear reward-risk measures, we provide an empirical 
comparison among the above strategies based on simulated data. We assume that decision 
makers invest their wealth in the market portfolio solution given by (9) and we consider the 
sample path of the final wealth and of the cumulative return obtained from the different 
approaches. We assume that the investor recalibrates the portfolio daily and has an initial wealth 

0W  equal to 1 and an initial cumulative return  0CR  equal to 0 (at the date 10/3/2008 when we 
use T = 1,837). Since we do not know the future evolution of assets returns from 10/3/2008, we 
assume that the returns for each future date correspond to those obtained as the mean of the 
scenarios and the same for the factors and the residuals of the previous factor model, i.e.,  

                                                 
22  See Ortobelli et al. (2009). 
23 See Rachev et al (2008) and Biglova et al (2009). 
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( )
, ,

1

1 S
s

i T k i T k
s

r r
S+ +

=

= ∑ ; ( )
, ,

1

1 S
s

i T k i T k
s

e e
S+ +

=

= ∑  for i=1,…,30 and ( )
, ,

1

1 S
s

j T k j T k
s

f f
S+ +

=

= ∑  for j=1,…,14. 

Therefore at the k-th recalibration, three main steps are performed to compute the ex-post final 
wealth and cumulative return: 
Step 1. Choose a performance ratio. Simulate 3,000 scenarios using the algorithm of the previous 
section . Determine the market portfolio ( )k

Mx  solution to the optimization problem given by (9) 
that maximizes the performance ratio. 
Step 2. The ex-post final wealth is given by:  

1 . 
where T kr +  is the vector of returns mean of our scenarios. The ex-post cumulative return is given 
by: 

( )( )
1 .k

k k M T kCR CR x r
′

+ += +  

Step 3. The optimal portfolio ( )k
Mx  is the new starting point for the ( 1)k + -th optimization 

problem given by (9).  
 
Steps 1, 2, and 3 were repeated for all the performance ratios 1,000 times so that we forecasted 
the future behavior of the optimal portfolio strategies in the next four years. The output of this 
analysis is represented in Figures 3, 4, and 5. Figure 3 compares the sample paths of   wealth and 
of the total return obtained with the application either of the Angelelli-Ortobelli heuristic or of 
the local maximization function fmincon of Matlab. This comparison shows that if we 
maximize the Rachev ratio with 0.35; 0.1α β= =  with the function for local maximum of 
Matlab, we could lose more than 20% of the initial wealth in four years. Figure 4 compares the 
sample paths of wealth and of the total return obtained with the Rachev ratio and the Sharpe 
ratio. In particular, the results suggest that using the Rachev ratio we can increase final wealth by 
more than 25%. Analogously, Figure 5 shows that using the Rachev Higher Moments ratio we 
can increase final wealth by more than 15%. Comparing Figures 4 and 5 we also see the 
superiority of the Rachev Higher Moments ratio approach relative to the Rachev ratio during the 
first 300 days. Then we see a superior performance of the Rachev ratio.  
What is clear from all of the comparisons is that the use of an adequate statistical and 
econometric model combined with appropriate risk and performance measures could have a 
significant impact on the investors’ final wealth.  
 
FIGURES 3, 4, AND 5 ABOUT HERE 
 
5 Concluding remarks 
 
In this chapter we provide a methodology to compare dynamic portfolio strategies consistent 
with the behavior of investors based on realistic simulated scenarios after  a reduction  of 
dimensionality of the portfolio selection problem.   
We first summarize the empirical evidence regarding the behavior of equity returns: heavy-tailed 
distributions, volatility clustering, and non-Gaussian copula dependence. Then we discuss how 
to generate scenarios that take into account the empirical evidence observed for equity return 
distributions. In particular, we first propose a way to reduce the dimensionality of the problem 
using principal components analysis. Then we approximate the returns using a factor model on a 
restricted number of principal components. The factors (i.e., principal components) and residuals 
of the factor model are modeled with an ARMA(1,1)-GARCH(1,1) with stable innovations. 
Moreover, we propose a copula approach for the innovations of the factors. This approach allows 
us to generate future scenarios. Second, we examine the use of reward/risk criteria to select 
optimal portfolios, suggesting the use of the Sharpe ratio, the Rachev ratio, and the Rachev 
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Higher Moments Ratio. Finally, we provide an empirical comparison among final wealth and 
cumulative return processes obtained using the simulated data. The empirical comparison 
between the Sharpe ratio and the two Rachev ratios shows the greater predictable capacity of the 
latter. 
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Table 1. Percentage of the Total Variance Explained by a growing number of components 
based on the covariance matrix.  

 
Principal 

component 

Percentage 
of variance 
explained 

Percentage 
of total 

variance 
explained 

Principal 
component 

Percentage 
of variance 
explained 

Percentage 
of total 

variance 
explained 

1 41.20 41.20 16 1.71 84.11 
2 5.33 46.53 17 1.64 85.75 
3 4.52 51.05 18 1.53 87.28 
4 4.08 55.14 19 1.45 88.73 
5 3.82 58.95 20 1.40 90.13 
6 3.24 62.19 21 1.37 91.50 
7 2.84 65.03 22 1.31 92.81 
8 2.72 67.75 23 1.24 94.05 
9 2.63 70.38 24 1.15 95.20 
10 2.37 72.75 25 1.05 96.26 
11 2.14 74.89 26 0.97 97.23 
12 2.03 76.92 27 0.88 98.11 
13 1.90 78.82 28 0.72 98.83 
14 1.83 80.65 29 0.65 99.48 
15 1.75 82.40 30 0.52 100.00 
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Table 2. Estimated Coefficients alpha and betas of  the factor model 
 MMM AA AXP T BAC BA CAT CVX C KO DD XOM GE GM HPQ 

alpha 0.001% -0.017% -0.004% -0.010% 0.004% -0.005% 0.015% 0.012% -0.022% 0.003% -0.004% 0.013% -0.019% -0.045% 0.010% 

beta 1 0.528% 0.600% 0.660% 0.501% 0.522% 0.497% 0.552% 0.426% 0.643% 0.416% 0.531% 0.531% 0.619% 0.460% 0.427% 

beta 2 -0.061% 0.175% 0.082% -0.189% 0.116% 0.090% 0.172% -0.165% 0.152% -0.326% 0.021% -0.223% 0.029% 0.184% 0.262% 

beta 3 0.079% 0.392% -0.137% -0.139% -0.273% 0.146% 0.212% 0.411% -0.248% -0.053% 0.095% 0.370% -0.028% -0.146% 0.071% 

beta 4 0.004% -0.122% -0.121% 0.166% -0.359% 0.031% -0.078% -0.289% -0.280% 0.100% -0.037% -0.230% 0.010% -0.142% 0.331% 

beta 5 0.182% -0.054% -0.035% -0.310% -0.017% 0.195% 0.080% -0.180% -0.104% 0.208% 0.090% -0.131% 0.028% 0.052% -0.124%

beta 6 -0.014% 0.063% -0.026% 0.252% 0.009% 0.031% -0.052% 0.062% -0.036% 0.135% -0.012% 0.053% -0.055% 0.066% -0.020%

beta 7 0.057% -0.202% 0.019% -0.221% 0.074% -0.242% -0.032% 0.148% 0.083% 0.189% -0.033% 0.156% -0.013% -0.085% 0.117% 

beta 8 -0.083% 0.020% 0.009% -0.068% 0.010% 0.185% -0.043% -0.024% 0.008% -0.033% -0.047% -0.040% 0.019% -0.018% 0.120% 

beta 9 0.118% -0.058% -0.028% 0.093% 0.000% 0.114% 0.117% -0.100% 0.003% 0.027% 0.076% -0.052% 0.078% -0.059% -0.169%

beta 10 0.001% -0.194% 0.070% -0.020% 0.057% 0.152% -0.106% 0.016% 0.067% 0.150% -0.050% 0.007% 0.037% -0.017% 0.143% 

beta 11 0.118% 0.155% 0.010% -0.026% -0.052% -0.327% 0.148% -0.102% -0.033% 0.072% 0.083% -0.096% 0.074% 0.169% 0.001% 

beta 12 0.021% 0.069% -0.107% 0.026% -0.002% 0.004% -0.078% -0.010% -0.052% 0.193% 0.088% -0.004% -0.082% 0.419% 0.181% 

beta 13 0.069% 0.058% -0.076% 0.027% 0.093% 0.015% -0.020% -0.061% -0.010% -0.165% 0.087% -0.040% 0.017% 0.017% -0.051%

beta 14 0.128% 0.193% 0.010% 0.033% 0.068% -0.105% 0.097% -0.105% 0.072% 0.114% 0.131% -0.092% 0.025% -0.438% 0.272% 

 HD IBM INTC JNJ JPM KFT MCD MRK MSFT PFE PG UTX VZ WMT DIS 
alpha -0.018% -0.003% -0.012% 0.006% 0.001% 0.001% 0.016% -0.018% -0.007% -0.019% 0.019% 0.007% -0.012% 0.004% -0.001%

beta 1 0.585% 0.444% 0.670% 0.434% 0.646% 0.287% 0.374% 0.309% 0.543% 0.516% 0.411% 0.554% 0.491% 0.469% 0.528% 

beta 2 0.121% 0.067% 0.156% -0.324% 0.152% -0.188% -0.020% -0.339% 0.024% -0.270% -0.294% 0.138% -0.165% -0.014% 0.095% 

beta 3 -0.158% 0.017% 0.050% -0.048% -0.251% -0.135% 0.010% -0.087% 0.034% -0.079% -0.034% 0.140% -0.109% -0.093% 0.023% 

beta 4 0.085% 0.184% 0.408% 0.032% -0.239% -0.036% 0.052% -0.008% 0.259% -0.037% 0.050% 0.009% 0.170% 0.105% 0.131% 

beta 5 0.172% -0.103% -0.057% 0.060% -0.129% 0.182% 0.196% -0.106% -0.079% 0.005% 0.184% 0.171% -0.281% 0.079% -0.023%

beta 6 0.001% -0.043% -0.043% -0.142% 0.013% 0.330% 0.047% -0.360% -0.049% -0.281% 0.063% -0.026% 0.179% -0.011% -0.041%

beta 7 0.049% 0.092% 0.267% 0.025% 0.076% 0.050% -0.223% -0.161% 0.129% -0.085% 0.094% -0.132% -0.199% 0.028% -0.109%

beta 8 -0.209% 0.036% 0.086% -0.025% 0.047% 0.399% -0.185% 0.218% -0.002% -0.005% -0.081% 0.101% -0.092% -0.167% 0.031% 

beta 9 -0.056% -0.013% -0.045% 0.101% -0.009% -0.124% -0.475% -0.142% -0.018% -0.002% 0.065% 0.160% 0.083% 0.003% 0.057% 

beta 10 -0.318% -0.040% -0.018% 0.045% 0.072% -0.216% 0.181% -0.108% -0.017% -0.051% 0.121% 0.094% 0.021% -0.205% 0.087% 

beta 11 -0.191% 0.087% 0.000% 0.148% -0.017% 0.060% 0.027% -0.034% -0.101% 0.003% -0.030% -0.106% -0.007% -0.188% 0.170% 

beta 12 -0.007% -0.183% 0.056% -0.205% -0.019% -0.150% -0.142% 0.207% -0.027% -0.061% 0.140% 0.018% 0.016% -0.022% -0.193%

beta 13 -0.196% 0.066% 0.110% 0.002% -0.007% 0.033% 0.066% -0.141% 0.102% 0.197% 0.084% 0.025% 0.019% 0.010% -0.346%

beta 14 0.008% -0.156% -0.104% -0.183% 0.100% 0.001% 0.001% 0.090% -0.134% -0.024% 0.052% -0.016% 0.032% 0.022% -0.129%
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Table 3. Maximum likelihood estimates of ARMA(1,1)-GARCH(1,1) parameters 
for the 14 factors. 

coefficients Factor 1 Factor 2 Factor 3 Factor 4 Factor 5 Factor 6 Factor 7 
, 0ja  0.02689 0.01643 0.01538 0.00421 0.04306 0.02288 -0.03331 

,1ja  0.25134 0.12943 -0.20296 0.13580 -0.26676 -0.35932 -0.36273 

,1jb  -0.32185 -0.03155 0.25612 -0.12642 0.27020 0.40564 0.37829 

,0jc  0.00656 0.01864 0.01248 0.00470 0.00000 0.17677 0.00294 

,1jc  0.91919 0.86903 0.90736 0.93934 0.95628 0.71501 0.96956 

,1jd  0.07633 0.11862 0.07947 0.05868 0.04372 0.10935 0.02775 

        

coefficients Factor 8 Factor 9 Factor10 Factor11 Factor12 Factor13 Factor14 

, 0ja  0.00197 -0.01988 0.00786 0.00034 0.00047 -0.01269 -0.01689 

,1ja  0.77222 -0.60207 -0.03102 -0.50587 0.94011 -0.60657 0.01424 

,1jb  -0.79557 0.64574 0.04524 0.46606 -0.93076 0.62172 0.03502 

,0jc  0.00428 0.00927 0.00353 0.00665 0.01316 0.02258 0.01895 

,1jc  0.98033 0.95180 0.97129 0.96058 0.94889 0.91950 0.93939 

,1jd  0.01504 0.03947 0.02580 0.03321 0.03883 0.05879 0.04197 
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Table 4. Maximum likelihood estimate of parameters of  the skewed Student’s t  distribution for the 14 
factors. 
 F1 F 2 F 3 F 4 F 5 F 6 F 7 F 8 F 9 F 10 F 11 F 12 F 13 F14 
γ  -7.19% 3.29% -17.5% -4.22% 3.95% 9.66% 2.17% -10.66% 1.72% 0.03% 2.33% -2.68% 1.06% -5.87%
μ  -2.11% -18.3% 39.68% 21.77% -9.50% -16.2% 7.76% 7.56% -6.6% -5.93% -11.9% -9.34% -0.81% 19.07%

v 5  
Matrix  Σ  

 F1 F 2 F 3 F 4 F 5 F 6 F 7 F 8 F 9 F 10 F 11 F 12 F 13 F14 

1 72.06% 47.54% -35.8% -41.1% -28.0% 8.48% 8.98% 11.54% -20.9% 6.68% 7.11% 29.45% 9.01% -14.8%

2 47.54% 70.38% -33.2% -34.7% -11.3% 2.82% 16.89% 3.54% -10.6% 5.87% 11.99% 23.04% 14.53% -23.9%

3 -35.8% -33.2% 71.18% 39.25% 13.87% 10.64% -12.5% -3.49% 8.46% -15.2% 14.68% -14.2% 11.15% 12.07%

4 -41.1% -34.7% 39.25% 77.07% 17.14% 0.25% -2.98% -4.41% 3.65% -7.37% -1.15% -24.9% -2.04% 13.57%

5 -28.0% -11.3% 13.87% 17.14% 77.56% -1.59% -18.1% -21.0% 10.39% -8.26% 1.86% -5.26% -0.69% -14.5%

6 8.48% 2.82% 10.64% 0.25% -1.59% 57.56% -1.83% -15.8% 5.43% -1.54% 6.92% -0.13% 13.64% -12.7%

7 8.98% 16.89% -12.5% -2.98% -18.1% -1.83% 70.42% 2.48% -12.5% 13.65% -4.07% -13.4% 7.58% 10.50%

8 11.54% 3.54% -3.49% -4.41% -21.0% -15.8% 2.48% 62.45% -8.60% 14.39% -2.50% 6.44% -3.28% 10.94%

9 -20.9% -10.6% 8.46% 3.65% 10.39% 5.43% -12.5% -8.60% 61.14% -6.05% -5.60% -14.3% -0.76% 6.40%

10 6.68% 5.87% -15.2% -7.37% -8.26% -1.54% 13.65% 14.39% -6.05% 70.92% -20.4% -18.4% -0.06% 14.32%

11 7.11% 11.99% 14.68% -1.15% 1.86% 6.92% -4.07% -2.50% -5.60% -20.4% 66.84% 28.08% 12.74% -15.2%

12 29.45% 23.04% -14.1% -24.9% -5.26% -0.13% -13.4% 6.44% -14.3% -18.4% 28.08% 70.98% 8.16% -45.0%

13 9.01% 14.53% 11.15% -2.04% -0.69% 13.64% 7.58% -3.28% -0.76% -0.06% 12.74% 8.16% 63.76% -15%

14 -14.8% -23.9% 12.07% 13.57% -14.5% -12.7% 10.50% 10.94% 6.40% 14.32% -15.2% -45.0% -15.% 70.70%
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Figure 1. Rachev ratio with parameters 0.01α β= =  
valued varying the composition of three components of DJI  
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Figure 2. Rachev Higher Moments Ratio Rachev ratio valued 
varying the composition of three components of DJI  



 21

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3. Final wealth and total return realized in 1000 days using the Rachev ratio with 
parameters 0.35; 0.1α β= =   and maximizing it either with the Angelelli-Ortobelli heuristic or 
the function fmincon of Matlab. 
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Figure 4. Final wealth and total return realized in 1000 days using either the Rachev ratio with 
parameters 0.35; 0.1α β= =  or the Sharpe ratio.   
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Figure 5. Final wealth and total return realized in 1000 days using either the Rachev high moment 
ratio or the Sharpe ratio.   

 


